

Lenguaje compilado (El resultado se ejecuta en la máquina virtual de Java).

Orientado a objetos (Todo código pertenece a una clase).

Fuertemente tipado (Todos los datos/variables tienen un tipo).

Multiplataforma.

Soporte para trabajo en red.

Seguro y de rápida ejecución.

Aplicaciones –> Aplicaciones web, software de escritorio (con JavaFX o Swing),

aplicaciones móviles aplicaciones que se ejecutan en red (con Java socket).

Entorno de desarrollo.

Necesito JAVA con sus librerías (JDK), su máquina virtual (JVM) y entorno de ejecución

con el compilador (JRE).

Eclipse (IDE)

Entorno de desarrollo

integrado que incluye lo

necesario para trabajar

con JAVA, además de

otros lenguajes.

Una clase es un elemento de la programación orientada a objetos que actúa

como una plantilla y va a definir las características/comportamientos de un objeto.

• Una clase es una plantilla para crear objetos.

• Un objeto es una instancia de una clase.

*

¡Hola mundo! (Ejercicio 0)

Todo el código debe estar dentro de alguna clase*

Todo el código ejecutable debe estar dentro de un método main**

 syso+ctrl+espacio

Los paquetes sirven

para facilitar la

modularidad del código.

Pueden contener

diferentes archivos,

correspondientes a

definiciones de

interfaces o clases. Para

utilizar los elementos de

un paquete distinto es

necesario importarlo.

double b = 5.6;

int a = (int)b;

Se pueden agregar comentarios al código de la siguiente

manera:

Tipos de datos básicos (primitivos):

Tipo de dato Descripción Espacio en memoria

byte Valor entero (-128 ~ 127) 8 bits

short Valor entero (-32768 ~ 32767) 16 bits

int Valor entero (-2^31~2^31-1) 32 bits

long Valor entero (-2^63~2^63-1) 64 bits

float Valor real 32 bits

double Valor real doble precisión 64 bits

char Carácter 8 bits

boolean Booleano (True,False) 8 bits

Conversión de tipos (JAVA casting)

No hay problema si un tipo de dato de menor rango se convierte a uno de mayor.

byte < shot < int < long <float < double

int a =6;

double b=a;

En caso contrario, se debe realizar un casting de tipos.

 Relacionales (resultado booleano)

 Lógicos (unir comparaciones)

 De asignación

Operador Significado
+ Suma

- Resta

* Multiplicación

/ División

% Resto

Operador Significado
== Igual

!= Distinto

> Mayor

>= Mayor o igual

< Menor

<= Menor o igual

Operador Significado
|| OR: true si alguna condición se cumple.

&& AND: true si todas se cumplen.

! NOT: invierte el resultado

Operador Significado
= Asigna valor a variable.

+= Suma valor a variable y asigna.

-= Resta valor a variable y asigna.
*= Multiplica valor a variable y asigna.

/= Divide valor a variable y asigna.

 Las cadenas en Java son un objeto de la clase string, se delimitan

entre comillas dobles y no son un tipo de dato primitivo.

Una excepción es un error en tiempo de ejecución

que provoca la finalización repentina del programa.

Existen varios tipos de excepciones y pueden

controlarse mediante un bloque try/catch.

Área del

triángulo.

Pueden utilizarse múltiples bloques catch, uno mismo para varios

tipos de excepciones, o utilizar la clase padre Exception para

referirse a todas.

El programa finaliza de forma

controlada al detectarse una excepción

del tipo InputMismatch

(el usuario ingresa un tipo de dato no

esperado).

La calculadora muestra los resultados de sumar, restar, multiplicar

y dividir dos enteros (para elaborar una calculadora más compleja
necesitamos utilizar estructuras de control).

package proyectos;

import java.util.Scanner;

public class CalculadoraSimple {

 public static void main(String[] args) {

 int primerNumero,segundoNumero;

 Scanner sc = new Scanner (System.in);

 // ingresa el primer operando

 System.out.println("Ingrese el primer operando: ");

 try {

 // es probable que se produzca una excepcion

 primerNumero = sc.nextInt();

 }

 // ingresa con cualquier tipo de excepcion

 catch (Exception err) {

 System.out.println("Tipo de dato incorrecto. Se

utilizará el valor 1");

 primerNumero=1;

 }

 // se ingresa el segundo entero

 System.out.println("Ingrese el segundo operando: ");

 try {

 segundoNumero = sc.nextInt();

 }

 catch (Exception err) {

 System.out.println("Tipo de dato incorrecto. Se

utilizará el valor 1");

 segundoNumero=1;

 }

 /* se definen y muestran todas las operaciones utilizando

variables, teniendo en cuenta que la división puede

 producir una excepción */

 int suma = primerNumero + segundoNumero;

 System.out.println("\n"+a +"+"+b+"= "+suma);

 int resta = a-b;

 System.out.println(primerNumero +"-"+ segundoNumero +"=

"+resta);

 int multip= primerNumero * segundoNumero;

 System.out.println(primerNumero +"*"+ segundoNumero +"=

"+multip);

 int div;

 try {

 div = primerNumero / segundoNumero;

 System.out.println(primerNumero +"/"+segundoNumero+"=

"+div);

 }

 catch (Exception err) {

 System.out.println("No se puede dividir entre 0");

 }

 sc.close();

 }

}

Ejecución del programa

Escribir un programa

que solicite un número,

e indique si el mismo

es negativo y par o no

lo es.

Estructuras de control.

Modifican el flujo secuencial del programa.

if (condición) {

//Instrucciones a ejecutar.

}

else if (condición) {

//Instrucciones a ejecutar.

}

else {

/*Instrucciones a ejecutar si

ninguna condición se cumple

*/

}

Ejercicio 5

Ejercicio 5

package ejemplos;

import java.util.*;

public class Calificacion {

 public static void main(String[] args) {

 // TODO Auto-generated method stub

 Scanner sc = new Scanner (System.in);

 sc.useLocale(Locale.US);//utilizo el punto como separador decimal

 System.out.println("Ingrese la calificación final :");

 // Podría utilizar try/catch

 float calif=sc.nextFloat();

 if (calif <= 5.75 && calif >= 1) {

 System.out.println("Insuficiente.");

 }

 else if (calif > 5.75 && calif <= 7.9) {

 System.out.println("Aceptable.");

 }

 else if (calif >= 8 && calif <= 10) {

 System.out.println("Muy buen trabajo");

 }

 else {

 System.out.println("No es una calificación válida");

 }

 sc.close();

}

}

 Ejecución del programa.

switch (variable) {

 case valor1:

 // secuencia de instrucciones.

 break;

 case valor2:

 // secuencia de instrucciones.

 break;

 .

 .

 case valorN:

 // secuencia de instrucciones.

 break;

 default:

 // instrucciones por defecto

 }

package switch_ejemplo;

import java.util.*;

public class Switch {

 public static void main(String[] args) {

 // TODO Auto-generated method stub

 Scanner sc = new Scanner (System.in);

 System.out.println("Ingrese un número(1-7): ");

 int num=sc.nextInt();

 switch (num) {

 case 1: System.out.println("Lunes");

 break; // si es una sola instrucción no necesito llaves.

 case 2: System.out.println("Martes");

 break;

 case 3: System.out.println("Miércoles");

 break;

 case 4: System.out.println("Jueves");

 break;

 case 5: System.out.println("Viernes");

 break;

 case 6: System.out.println("Sábado");

 break;

 case 7: System.out.println("Domingo");

 break;

 default: System.out.println("No es un número válido");

 }

 sc.close();

 }

}

Si no hay break; se continúa

ejecutando el siguiente

bloque case.

Ejecuta un bloque de código en bucle, mientras se

cumpla una condición.

Se conoce la cantidad de iteraciones de antemano.

Mostrar por pantalla todos los

números múltiplos de 3, entre 1

y 100.

Realizar un programa que pida una cantidad de

números (determinada por el usuario).

Al finalizar muestra el promedio de todos los

valores y cuantos hay mayores/menores que 10.

Ejecución del

programa.

do

{

 Bloque de Instrucciones...

}

while(condición de ingreso al bucle);

Pedir números por teclado

hasta ingresar un 0.

Al terminar mostrar la suma,
el mayor y el menor de los
números ingresados.

while(condición de ingreso al bucle)

{

 Bloque de Instrucciones…

}

//al menos ingresa una
vez al bucle.

 Ejercicio 11

La opción debug permite establecer breakpoints y

ejecutar el código línea a línea desde allí.

Se puede visualizar en tiempo real el valor que

adquieren variables y expresiones, para detectar

así un funcionamiento no deseado del programa.

package cadenas;

import java.util.*;

public class cadenas {

 public static void main(String[] args) {

 // Defino cadenas

 String cadena1 = "Soy una cadena";

 String cadena2 = new String ("Otra cadena de caracteres");

 //Concateno cadenas

 String cadena3=cadena1+" "+cadena2;

 System.out.println(cadena3);

 //Longitud de una cadena

 System.out.println(cadena3.length());

 //Comparar con método equals

 //compareTO compara alfabéticamente

 Scanner sc =new Scanner (System.in);

 System.out.println("Ingrese un texto");

 String texto1=sc.nextLine();

 System.out.println("Ingrese un texto");

 String texto2=sc.nextLine();

 if (texto1.equals(texto2)) {

 System.out.println("Son iguales.");

 }

 else {

 System.out.println("Son diferentes");

 }

 sc.close();

 }

}

Cadenas de caracteres//String

La clase String se utiliza para manipular cadenas. Tiene

varios métodos que pueden utilizarse para todos los

objetos de este tipo.

String cadena1 = ”Soy una cadena”;

Recorrer un string

Pedir una cadena de

caracteres por teclado y

contar cuantos espacios en

blanco se ingresaron.

Ejercicio 12

Ejercicio 12

Estructuras de datos//Array

Permiten almacenar más de un dato del mismo tipo.

Una vez creado el tamaño es fijo.

Ejecución del

programa.

Ejecución del programa.

Solicitar la temperatura

de cada día de la

semana.

Realizar el promedio e
indicar si en algún
momento superó los 30º

Ejercicio 15

La Clase Math está

integrada en Java. Tiene

sus propios métodos y

forma parte del paquete

java. lang

El método random genera

un número de tipo double

dentro del intervalo [0,1)

 Ejercicio 15

 Arreglos bidimensionales (MATRICES).

a b

c d

filas

columnas

 Ejercicio 16
Utilizando matrices, realizar un programa que muestre las calificaciones

asociadas a un grupo de alumnos y calcule el promedio final.

Datos de la matriz

• Nombre del alumno.

• Nota de clase.

• Nota de proyecto.

Nota final (60% nota de proyecto 40% nota de clase)

 Utilizo la clase Double (cada tipo numérico

tiene una clase en JAVA)

//método parseDouble para convertir texto

a tipo double y operar.

